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Ant Colony Optimization for Resolving Unit Commitment 
Issues by Considering Reliability Constraints 
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Abstract— Unit Commitment or generator scheduling is one 
of complex combination issues aiming to obtain the cheapest 
generating power total costs. Ant Colony Optimization is 
proposed as a method to solve Unit Commitment issues because it 
has a better result convergence according to one of journals that 
reviews methods to solve Unit Commitment issues. Ant Colony 
Optimization modification into Nodal Ant Colony Optimization as 
well as addition of several elements are also conducted to 
overcome Ant Colony Optimization limitations in resolving Unit 
Commitment issues. Nodal Ant Colony Optimization simulations 
are then compared with Genetic Algorithm and Simulated 
Annealing methods which previously has similar simulations. 
Reliability index combination in a form of Loss of Load 
Probability and Expected Unserved Energy are also added as 
reliability constraints in the system. Comparison of three methods 
shows that Nodal Ant Colony Optimization is able to provide 
better results up to 0.08% cheaper than Genetic Algorithm or 
Simulated Annealing methods. 

 
Keywords—Generator Scheduling, Nodal Ant Colony 
Optimization, Reliability Constraints. 

I. INTRODUCTION 
The Unit Commitment (UC) is a decision-making process 

used to determine optimal generator scheduling by minimizing 
required total operating costs. Importance of UC problems 
results is that it is used as a resolution of load demand cycle 
occurring on daily basis. UC issues in a large scale have 
relatively complex problems in finding their resolution. Several 
studies that reviewed UC resolution methods explained the 
effectiveness and advantages of each method in solving UC 
problems, one of which stated that Ant Colony Optimization 
(ACO) and PSO methods were highlighted because the results 
given were more convergent [1]. 

ACO is an optimization method that mimics ant behavior in 
determining the shortest distance between nests to food source. 
Some studies show that ACO has a better solution than other 
methods used in the study [2]-[4]. Nevertheless, the use of 
ACO as a UC solution has not been used in scheduling a large-
scale power generator because it still uses ten generating units 
as a test system. 

One of causes of UC issues complexity is that generator 
number addition in system will cause total combination of 

generator scheduling increase exponentially. For example, if 
the possibility of a generator is only an on/off status (1 and 0), 
then the possibility of total generator that can be obtained for 
each hour is (2N¬¬-1), with N as generator unit number. Those 
number of combinations which later becomes a problem in 
ACO method, because ACO use is very dependent on ant line 
formations originating from combination of those generators. 

This research implements a Nodal Ant Colony Optimization 
(NACO) method in its use. The utilized NACO concept in this 
study remains the same as NACO which comes from [5]. The 
difference is that NACO utilized in this paper adopts the best 
cost per produced unit function instead of fuel cost visibility 
value [6]. 

Simulations carried out in this research also add constraints 
reliability into it. System reliability level is then represented in 
reliability index in a form of Loss of Load Probability (LOLP) 
and Expected Unserved Energy (EUE). LOLP and EUE are 
chosen because those two indices show probability magnitude 
and amount of energy that is not met at a certain time period. 
In addition, utilization of both indices was also used in previous 
studies, which ease the comparison process between Genetic 
Algorithm (GA) [7] and a Simulated Annealing (SA) [8] 
methods simulation results [9]. 

II. PROBLEM FORMULATION 

A. Unit Commitment 
The objective function of UC is to minimize required total 

generation costs. UC objective formulation from UC only takes 
two elements, namely fuel cost and start-up cost functions. 
These two functions are then optimized so that minimum 
generation cost is obtained. 

𝑇𝑇𝑇𝑇 = ��𝑈𝑈𝑖𝑖,𝑡𝑡 𝐹𝐹𝐹𝐹𝑖𝑖�𝑃𝑃𝑖𝑖,𝑡𝑡� + 𝑈𝑈𝑖𝑖,𝑡𝑡 𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡

𝑁𝑁

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1

 (1) 

with 

𝐹𝐹𝐹𝐹𝑖𝑖�𝑃𝑃𝑖𝑖,𝑡𝑡� = 𝑎𝑎𝑖𝑖  𝑃𝑃𝑖𝑖,𝑡𝑡2 + 𝑏𝑏𝑖𝑖  𝑃𝑃𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑖𝑖 (2) 

𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡 = 𝐶𝐶𝑐𝑐 �1 − 𝑒𝑒−𝑡𝑡 𝛼𝛼� � + 𝐶𝐶𝑓𝑓 (3) 

with 
i = generating unit; 
t = time (hour); 
T = total UC scheduling time (hour); 
N = total number of generating units; 
TC = total cost of generating operation 
Ui,t = condition of generating unit number -i at  t 

time (has a value of 0 if generator is off and 1 
if generator is on); 
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Pi,t = active power generated by generator number -i 
at -t (MW) time; 

FCi(Pi,t)) = fuel cost function of generator number i at –t 
time ($/hour); 

SUi,t = start-up cost of generator number i at -t time 
($/hour); 

ai,bi, ci =  generation cost constant on generating unit 
number I; 

Cc = cold start cost ($); and 
Cf = fixed/constant cost ($). 

Some limitations which need to be considered in completing 
generating unit schedule are as follows. 
• Active power balance: 

∑ 𝑈𝑈𝑖𝑖,𝑡𝑡𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝑃𝑃𝐷𝐷,𝑡𝑡𝑖𝑖∈𝑁𝑁                   𝑡𝑡 ∈ 𝑇𝑇. (4) 
• Maximum and minimum power per generator 

𝑈𝑈𝑖𝑖,𝑡𝑡𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 ≤ 𝑃𝑃𝑖𝑖,𝑡𝑡 ≤ 𝑈𝑈𝑖𝑖,𝑡𝑡𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖. (5) 

• Minimum uptime and downtime of generating units 

𝑋𝑋𝑖𝑖𝑜𝑜𝑜𝑜(𝑡𝑡) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖, 
𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,. 

(6) 

B. System Reliability 
Addition of system Reliability level aims to evaluate 

scheduling results toward the tested reliability level. A system 
is claimed to be reliable if failure possibility of the generator 
and system can be anticipated so that all loads remain fulfilled 
in a certain period of time. Some variables used to formulate 
the system reliability levels are as follows. 

1) Outage Replacement Rate (ORR): ORR indicates 
probability of a unit to fail and that unit cannot be substituted 
during lead time (T). 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 (7) 

2) LOLP and EUE: LOLP are indices expressing generating 
system probability that cannot meet demand load. LOLP is 
calculated every hour by using ORR from units that are 
activated (committed) at that hour. EUE is described as a 
calculation of energy that is not able to be served by a 
generator. Unlike LOLP, EUE is calculated at the end of 
scheduling because it is a sum of each estimate of underserved 
load. 

𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡 = �𝑃𝑃𝑃𝑃𝑗𝑗𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 (8) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = �𝑃𝑃𝑃𝑃𝑗𝑗𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 − 𝐶𝐶𝐶𝐶𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

 (9) 

with 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗 �
1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝑗𝑗 < 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡
0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝑗𝑗 ≥ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡

 
𝑃𝑃𝑃𝑃𝑗𝑗 = COPT probability in j outage; 

𝐶𝐶𝐶𝐶𝑗𝑗 = in service capacity of COPT in j outage; 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 = load demand at t hour; and 
𝑛𝑛 = total number of COPT table rows. 

3) Load uncertainty: One of the objectives in combining 
load predicting uncertainty forecasting is to take into account 
inherent probabilities, namely the system load differs from the 
load predicting value. Load uncertainty is represented as a form 
of normal distribution with seven levels. 

𝑃𝑃𝑖𝑖 = 𝑃𝑃0 + (𝑖𝑖 × 𝑆𝑆𝑆𝑆) (10) 

with 
Pi = estimation of the possible load; 
P0 = load demand occurring on that time; 
i = class interval; and 
SD = class' standard deviation of load prediction. 

III. NODAL ANT COLONY OPTIMIZATION 
ACO requires large computing space in its initialization 

process. A large number of all possible states (2N) is impossible 
to use it on a large scale. NACO is an ACO development 
created by changing initialization process in ACO by utilizing 
transition system existing in ACO [5]. This method breaks 
down states in ACO initialization process into several small 
parts called nodes. The nodes utilization in NACO is effective 
to reduce states possibility occurring in ACO, thus it can save 
memory capacity. Furthermore, nodes utilization also reduces 
a chance of state that has a total cost of each hour above the 
average.  

NACO utilization also needed to be modified because there 
were differences in objective functions in its utilization. One 
modification that had been made was altering visibility values 
by using best cost per produced unit stated in [6]. These NACO 
simulation results were then used as final results in the study.   
Model of NACO Issues 

UC initialization on either ACO or NACO had a very 
important role in its process.  Importance of this initialization 
was because in those stages UC limitations were converted into 
states which were then utilized in transition process.  The more 
states formed in this initialization could also increase optimal 
value of the utilized ACO method. Resolution of UC issues by 
utilizing NACO is broadly illustrated by a flowchart in Fig. 1. 

C. NACO Formulation 
NACO steps were generally divided into three, namely 

initialization, transition, and updating pheromone. These three 
steps repeated continuously until a desired condition was 
achieved. 

1) NACO Initialization: NACO had a difference in its 
initialization state compared to regular ACO. In NACO 
initialization, generating units were broken down into small 
groups in their state-finding process. The separation was 
intended to simplify the combination of the previous state as 
much as 2N per hour on ACO method to be  2𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥 𝑁𝑁

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 

with 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 was number of generator in each part formed from 
generating unit. Using this method, the increase states number 
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caused by combination due to number of generating units could 
be minimized, so as to cut down required memory capacity and 
computational time due to the search for states in ACO model. 

Start

Parameter 
Initialization

t = 1

n ant = 1

ACO Transition

Last ant?

Updating 
pheromone

Last Iteration?

End

Iteration = 
Iteration +1

t = T?

n ant = n ant + 1

t = t + 1

 

Fig. 1 NACO flowchart for UC issues. 

In this process, NACO visibility formation made for ACO 
described how one state could be reached from a state where 
the ants were located [10]. In ACO, magnitude of visibility 
values was an inverse of possible transitional cost from this 
hour to the next hour. 

𝜂𝜂(𝑟𝑟,𝑠𝑠) =
1

𝐹𝐹𝐹𝐹(𝑆𝑆) + 𝑆𝑆𝑆𝑆(𝑟𝑟,𝑠𝑠) + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1(𝑟𝑟,𝑠𝑠)
 (11) 

Penalty given prior to transition would also affect a state’s 
visibility level. One of UC penalties given at the beginning 
before transition was tmin-up/down penalty, in this study it was 
called as penalty1. It aimed to produce a collection of states 
meeting UC limitations, particularly tmin-up/down limitations. 

2) NACO Transition: NACO transition in UC resolution 
was described as ants’ displacement from an initial node to the 
next node. NACO transition was carried out randomly using 
roulette wheel method by considering probability of each state 
obtained from (12).  

𝑃𝑃𝑘𝑘(𝑟𝑟, 𝑠𝑠) =
[𝜏𝜏(𝑠𝑠)][𝜂𝜂(𝑟𝑟, 𝑠𝑠)]𝛽𝛽

∑ [𝜏𝜏(𝑢𝑢)][𝜂𝜂(𝑟𝑟,𝑢𝑢)]𝛽𝛽𝑢𝑢𝑢𝑢𝑢𝑢
, 𝑠𝑠𝑠𝑠𝑠𝑠 (12) 

with 

𝑃𝑃𝑘𝑘(𝑟𝑟, 𝑠𝑠) = transitional probability from r state to s state; 
𝜏𝜏(𝑠𝑠) = pheromone intensity on s state; 
𝜂𝜂(𝑟𝑟, 𝑠𝑠) = visibility from r state to s state; 
β = a parameter indicating the importance of 

pheromone against distance; 
S = a collection of states that allows a visit from 

previous state. 

3) Pheromone Updating: Pheromone updating was a 
process to modify pheromone intensity existing inside 
pheromone matrix. Pheromone updating process in ACO was 
described as a process of adding or reducing pheromone 
intensity from each state so that it would affect visibility of that 
state in the next iteration. 

𝜏𝜏(𝑠𝑠)′ = (1 − 𝜀𝜀)𝜏𝜏(𝑠𝑠) + ∆𝜏𝜏(𝑠𝑠)𝑘𝑘 (13) 

with 

∆𝜏𝜏(𝑠𝑠)𝑘𝑘 = �
𝑄𝑄
𝑇𝑇𝑇𝑇𝑠𝑠

,

0,
 

𝜏𝜏(𝑠𝑠) = pheromone intensity on s state; 
s = selected states in transition process; 
𝜀𝜀 = evaporation factor, valued 0 to 1;  
𝑄𝑄 = constant; and 
TC = transitional cost. 

D. Best Cost per Produced utilization as a substitute for Fuel 
cost for NACO visibility 

NACO had issues in utilizing fuel cost as visibility during 
transition process on each node. This issue occurred because 
the number of fuel cost could only be determined after 
economic dispatch was carried out, whereas in ACO dispatch 
could only be carried out if a state value had been formed. The 
impact on NACO was that during transition process between 
nodes, fuel cost visibility would be empty, so modifications 
were required to be carried out to substitute the value. 

Best cost per produced [6] utilization in NACO in this study 
is used to substitute fuel cost value used as visibility.  By 
entering fuel cost coefficient from each generator into (14), 
value of the best cost per produced for each generator is 
obtained. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 = 2�𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖 + 𝑏𝑏𝑖𝑖 �
$

𝑀𝑀𝑀𝑀
� (14) 

with 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = cost per produced unit of generating unit i; 
𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖 = fuel cost coefficient from generating unit i. 

Then, the best production cost can be estimated without 
having to know the dispatched power. This the best cost per 
produced value is then used to substitute fuel cost value in (11) 
which is used as visibility. The generating unit is then sorted 
according to priority list based on best cost per produced value 
starting from the cheapest to the most expensive. 

The best cost per produced will represent fuel cost of each 
generation in an active state based on priority order obtained 

for a state passed by ants k 

for other state values 
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from (14). Whereas in an inactive state, fuel cost is still taken 
using best cost per produced in a reverse order, that is, 
generator with first priority using the best cost per produced in 
the last priority generator in calculating its visibility. This needs 
to be done to prevent a void visibility value when the generator 
is off. 

E. Elitist Ant System Addition 
Elitist ant system addition carried out in NACO is used to 

improve optimization accuracy resulting from best cost per 
produced utilization in previous subsection, because the use of 
best cost per produced is not as accurate as fuel cost in 
describing visibility of a state. This lack of accuracy can cause 
the optimization process not to be as high as the previous ACO. 
Formation of elitist ant utilization is formulated in (15). 

𝜏𝜏(𝑠𝑠)𝑘𝑘 = (1 − 𝜀𝜀)𝜏𝜏(𝑠𝑠) + ∆𝜏𝜏(𝑠𝑠)𝑘𝑘 + ∆𝜏𝜏(𝑠𝑠)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘  (15) 

with 

∆𝜏𝜏(𝑠𝑠)𝑘𝑘     = �
𝑄𝑄
𝑇𝑇𝑇𝑇𝑠𝑠

,

0,           
 

∆𝜏𝜏(𝑠𝑠)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧𝜎𝜎

𝑄𝑄
𝑇𝑇𝑇𝑇𝑠𝑠

,

 0,

 

𝜎𝜎 = constants from elitist ants. 

IV. SIMULATION RESULTS 
UC issues simulations was carried out using MATLAB 2012 

software, while data processing was carried out using a 
software from Microsoft, namely Microsoft Office Excel 2010 
and Word 2010. The computer utilized for simulations used the 
AMD Phenom 965BE @ 3.7GHz processor with 8192MB 
RAM. 

System test standard utilized I1996 IEEE Reliability Test 
System with 26 generators [9]. The utilized NACO referring to 
[5] as a basic theory guideline in using NACO. However, 
because the references used and this study had different 
objective functions, there were several modifications made, 
namely the utilization of the best cost per produced for EAS 
visibility and addition. Magnitude of pheromone matrix initial 
value was determined using a certain value, which was 0.001. 
Value of the number of iterations, ant populations and 
evaporation referred to one website regarding optimization, i.e. 
300, 50, and 0.05 [11]. 

In addition to obtaining the lowest cost, NACO modification 
was also carried out so that reliability constraints such as EUE 
and LOLP could be included in optimization process. 
Modifications made generally only altered the initialization 
process because the use of the best cost per produced and 
pheromones updating were due to EAS from the state. Another 
process such as transition process was still the same as the ACO 
transition process in general. Comparison results of IEEE 

RTS1996 system simulation test against previous research are 
shown in Table I [7], [8]. 

TABLE I 
COMPARISON OF GENERATING COST OF EACH METHOD 

EUE 
(%) 

LOLP 
(%) 

LT 
(h) 

SD 
(%) 

NACO 
($) 

GA 
($) 

SA 
($) 

0.10 - 4 0 708,537 - 708,789 
0.05 - 4 0 712,205 - 712,243 
0.01 - 4 0 717,995 - 718,747 

- 1.50 4 0 710,370 712,344 710,696 
- 1.00 4 0 717,592 719,225 717,938 
- 0.50 4 0 721,936 722,989 722,401 

0.05 1.5 2 0 708,818 709,112 708791 
0.05 1.5 4 0 711,712 712,680 712,067 
0.05 1.5 8 0 719,971 717,585 720,718 
0.01 1 2 0 715,962 715,782 716,083 
0.01 1 4 0 717,995 718,920 718,574 
0.01 1 8 0 722,085 722,532 723,300 
0.05 1.5 4 1 712,108 718,199 712,216 
0.05 1.5 4 3 713,085 713,802 713,855 
0.05 1.5 4 5 716,648 716,607 716,862 
0.01 1 4 1 718,351 719,102 718,843 
0.01 1 4 3 722,198 721,793 722,544 
0.01 1 4 5 728,583 722,373 730,675 

Table I compares the best total costs obtained from each 
method. The grey columns in the table show that the results 
shown by NACO are not the best cost. LT stands for lead time 
used to calculate system reliability based on ORR. SD is the 
standard deviation used in addition to load uncertainty. 

In the modification of NACO visibility formed using the best 
cost per produced, premature convergence can occur due to 
pheromone intensity accumulation caused by formed visibility. 
Combination of EAS utilization tries to reduce emerging 
impact caused by the utilized visibility. 

 

Fig. 2 Comparison of EAS and non-EAS simulation results. 

Fig. 2 shows simulation results iteration shown from the 
utilization of EAS and non-EAS from NACO simulation 
proposed with the reliability of LOLP 1.5%. EAS will force 
ants to make a transition to nodes that make up the best state in 
each hour, so that even if there is an increase in pheromone, the 
increase tends to occur at nodes that make up the best state in 
each hour. This method also reduces the impact of lack of 
occurring visibility accuracy, because pheromone intensity will 
slowly dominate transition process. 
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V. CONCLUSION 
In general, NACO simulation results with a comparison of 

GA and SA methods indicate that NACO is able to provide a 
relatively good result in its resolution. The use of best cost per 
produced as a substitute for fuel cost visibility and EAS 
addition is able to prove the results well. Simulations were 
carried out while maintaining system reliability shown in a 
form of LOLP and EUE indexes.  
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